C++ Example

This example written in C++ allows developers to manage VoipNow accounts and view information about calls.
® How To Install It
© System Requirements for Linux
© Setup
® How To Use It

© Authentication to the SystemAPI
© Examples

How To Install It

System Requirements for Linux
In order to be able to use the SystemAPI C++ example, you must have on your Linux system:

® GCC for Linux (for the demo, we used gcc version 4.8.5)
® gSOAP Toolkit for SOAP Web Services (recommended version: 2.8.32)
® OpenSSL (for the demo, we used OpenSSL version 1.0.1e)

Setup

STEP 1: Please download the files from our GitHub repository:

git clone https://github. cont 4psal/syst emapi - exanpl e-c. git

You should now find the following files in the systemapi-example-c folder:

File Description
README.txt Read me file that provides instructions on how to develop, compile and run SystemAPI applications.
createDemoFiles.sh Script that automatically generates the stub files and compiles the demo applications.

Demo/DemoAddServiceProvider.cpp = Demo application that adds a new service provider.

Demo/DemoAddOrganization.cpp Demo application that adds a new organization to a service provider.
Demo/DemoAddUser.cpp Demo application that adds a new user to an organization.
Demo/DemoAddExtension.cpp Demo application that adds a new extension to an organization.
Demo/DemocCallCosts.cpp Demo application that makes a call report.
Demo/RandomChargingPlan.cpp Utility class that generates a random charging plan ID.

Demo/RandomChargingPlan.h

Demolutils.cpp Miscellaneous utilitary functions.
Demolutils.h
Demo/Makefile Makefile that compiles and generates executables for the demo applications.

STEP 2: Please download the schema archive, extract the files and copy them to a directory that can be accessed over the Web. You should be able to
find the files at <PATH_TO_VO PNOW/ adni n/ ht docs/ soap2/ schenma/ <VERSI ON> where <PATH_TO_VO PNOWs can be obtained by running as r oot
this bash command:

grep "VO PNOW ROOT_D' /etc/voi pnow paths.conf | grep -v "#" | awk '{print $2}'

STEP 3: After you installed all the prerequisite tools and you have your schema files, you can use the script in the example archive to automatically
generate stub files and compile the demo applications.

First you need to make sure that the script has 'execute' permissions by running the following command as root:

chnod +x creat eDenoFi | es. sh

http://gcc.gnu.org/
http://gsoap2.sourceforge.net/
http://www.openssl.org/

STEP 4: Now you can run the script with the following command:

./ creat eDenoFi | es. sh <server_host nane> <PATH_TO _GSOAP> <PATH _TO SCHEMA_FI LES>

The parameters have the following significance:

Parameter Description
<server _host nane> The server's hostname.
<PATH_TO_GSOAP> Complete path to the folder where you extracted your gsoap.

<PATH_TO_SCHENMA_FI LES> = Complete path to the folder where you have the schema files.

STEP 5: After the script has finished running, navigate to the Deno/ folder from the location where you extracted the example archive. The script has
copied to Deno/ all the necessary stub files that were generated automatically with gsoap.

You can now use the Makefile from Denp/ to compile the demo applications and generate the executables.

To compile all the demo applications, run from command line:

make

If you only want to compile one of the demo applications, run from command line:

make <TARGET_NAME>

where <TARGET_NAME> can be one of the following:

Target name Description

demoaddserviceprovider | compile DenmoAddSer vi cePr ovi der. cpp

demoaddorganization compile DenbAddOr gani zat i on. cpp
demoadduser compile DenbAddUser . cpp
demoaddextension compile DenpAddExt ensi on. cpp
democallcosts compile DenpCal | Cost s. cpp

If you want to write your own application, you can use the script to automate the setup process and modify the Makefile to include your application.

STEP 6: You can manually generate the necessary stub files and compile your applications. If you have not done this already, go through every . wsdl file
in each module folder in your schema folder (Account /, Bi | | i ng/, ...), find the line that contains "CHANGEME" and replace "CHANGEME" with the IP of
your server.

STEP 7: After you have installed all the prerequisite tools and you have your schema files, you need to compile the voi pnowser vi ce. wsdl file from
your schema folder. It is recommended that you use wsdl 2h, that is the application provided by gSOAP. You can find it in your gsoap directory, i.e. / <PAT
H TO _GSQAP>/ bi n.

Navigate to / <PATH_TO_GSQOAP>/ bi n and run the followin command to compile the WSDL:

./1inux386/wsdl 2h -1 /<PATH TO GSOAP>/ WS/ -f -u -k -0 voip.h voi pnowservice. wsdl

For more information on the meaning of the parameters we used in the command above please run from command line:

./1inux386/wsdl 2h -help

To make things easy, we copied all the 4PSA VoipNow schemes to / <PATH_TO_GSQAP>/ bi n. Otherwise, you must specify the full path to voi pnowser v
ice.wsdl.

STEP 8: Next you need to generate C++ st ub files. It is recommended that you use soapcpp2, that is the application provided by gSOAP. You can find it
in the same directory as wsdl 2h.

Here is the command line to generate st ubs:

./1inux386/soapcpp2 -C -L -1 /<PATH TO GSOAP>/inport/ -w -x voip.h

For more information on the meaning of the parameters we used in the command above please run from command line:

./1inux386/ soapcpp2 -help

STEP 9: Next you must copy to the folder that contains you applications source code (for the demo, this folder is Deno/) the following SystemAP| C++
files:

Organi zati on. nsmap (you can add any *.nsmap file generated by {{gSoap}} , they are basically the sane)
soapAccount Proxy. h
soapBi | I'i ngProxy. h
soapC. cpp

soapChannel Proxy. h
soapCient.cpp
soapExensi onProxy. h
soapd obal QpProxy. h
soapH. h

soapOrgani zati onProxy. h
soapPBXProxy. h
soapReport Proxy. h
soapServi ceProvider. h
soapSt ub. h

soapUser Proxy. h

You must also copy the following files from / <PATH_TO_GSQAP>/ to the applications folder:

st dsoap2. cpp
st dsoap2. h

If you decide to write your own applications you must add the following #includes:

#i ncl ude "soapAccount Proxy. h"

#i ncl ude "soapBillingProxy.h"

#i ncl ude "soapChannel Proxy. h"

#i ncl ude "soapExt ensi onProxy. h"
#i ncl ude "soapd obal QpProxy. h"
#i ncl ude "soapOrgani zati onProxy. h"
#i ncl ude "soapPBXProxy. h"

#i ncl ude "soapReport Proxy. h"

#i ncl ude "soapServi ceProvider.h"
#i ncl ude "soapUser Proxy. h"

#i ncl ude "Organi zati on. nsmap”

#i ncl ude "stdsoap2. h"

STEP 10: Next you must edit all soap[MODULE] Pr oxy. h files from you applications folder and add the following code after soap_new() :

soap_ssl _init();
i f(soap_ssl _client_context(soap, SOAP_SSL_SKI P_HOST_CHECK, NULL, NULL, NULL, NULL, NULL))
soap_print_faul t(soap, stderr);

Each soap[MODULE] Pr oxy. h file will contain a class for that specific module and will set the endpoint (the server that we'll be making the requests to) to
the value that was fetched from the wsdl file corresponding to that module.

The nsmap files will map the namespaces to the proper URLs, so that's why you only need one of these files.

Compile the sources using the following command:

g++ -1ssl -DDEBUG - DW TH_OPENSSL -0 <EXECUTABLE_NAME> <DEMOAPPNAME. cpp> soapC. cpp soapCient.cpp stdsoap2.cpp

You can now use the recently created classes to write applications that interact with your VoipNow server.

You will notice that after running the applications, there are three files in your application folder: TEST. LOG, SENT. LOG, and RECV. LOG; they contain
useful logs about your application:

® SENT. LOGcontains the packages sent to the server
® RECV. LOGcontains the packages received from the server
® TEST. LOGcontains various logging messages generated by the gSOAP runtime environment

Although everybody can use the SystemAPI C++ example, it is important that the user account used to connect to the VoipNow server is allowed to access
the SystemAPI web service. For more information, please read the Access Management section.

How To Use It

Authentication to the SystemAPI

STEP 1: First you must create an object based on the module you are working with. For example, if you want to add a new service provider, you will need
to create a ServiceProvider object.

Servi ceProvi der *serviceProvi der = new ServiceProvider;

STEP 2: Then you need to create the SOAP header and fill in the user credentials.

Token-based Authentication

This type of authentication requires that you provide a valid access token that is generated through an OAuth flow using the key and secret of your
application. The code should look like this:

std::string accessToken("<EXAMPLE_ACCESS TOKEN>");

servi ceProvi der - >soap- >header = new SOAP_ENV__Header;

servi ceProvi der - >soap- >header - >ns4__serverInfo = NULL;

servi ceProvi der - >soap- >header - >ns4__userCredentials = new _ns4__user Credenti al s;
servi ceProvi der - >soap- >header - >ns4__user Credent i al s- >accessToken = accessToken;

In the examples above, ns4 should be replaced with the right namespace for the header data.

Please note that access tokens expire and can no longer be used for authentication. If your application fails and you get an error like:

<faultstring>The authentication data for access to this area or the object identification nunber is invalid.<
/faul tstring><faultactor></faultactor><detail ><nessage>The aut hentication data for access to this area or the
obj ect identification nunber is invalid.</nessage><code>100</code></detail >

in RECV. | og, the access token you provided for your application has expired and you need to generate a new token.

For more information on how to generate an access token for your application, please check Access Management document.

Examples
The SystemAPI C++ Tool contains demo applications that simulate the following operations:

add a Service Provider Account,
add an Organization Account,

add a User Account,

add an Extension Account,

get the Call Costs for a User Account.

The source code for these demo applications can be found in the Demo/ folder which you extracted from the example archive.

Add a ServiceProvider
The following example shows how to add a new service provider.

The source code makes use of the class "RandomChargingPlan" which you can find in Demo/RandomChargingPlan.*.
1
You can also use this class when adding a new organization or a new user.

int main(int argc, char *argv[])
{

/1 make sure that each tine you run your application, a valid access token is provided

https://wiki.4psa.com/display/VNUAPI30/Access+Management
https://wiki.4psa.com/display/VNUAPI30/Access+Management

if (argc '=2) {

std::cerr << "Usage: ./<executable_name> \"<access_token>\"" << std::endl;
std::cerr << " exanpl e: ./ denpaddservi ceprovider \"1|V_pnPvEn25- H gAzERX_nvJbBvNs~q3F| 1| v- gnt TAGFH-

UCUXOEMR2_r OXTVDt w~qCR\ "" << std::endl;

exi t (EXI T_FAI LURE) ;
}

// W will add a new Service Provider, so we need a Servi ceProvi der object

Servi ceProvi der *serviceProvi der = new ServiceProvider;
if (NULL == serviceProvider) {

std::cerr << "Failed creating a ServiceProvider object" << std::endl;

exit (EXI T_FAl LURE) ;
}

/1 Authentication Data - passed from conmand |ine
std::string accessToken(argv[1]);

/1 filling in the header with the user credentials
servi ceProvi der - >soap- >header = new SOAP_ENV__Header;
if (NULL == serviceProvider->soap->header) {

std::cerr << "Failed creating a SOAP_ENV_HEADER obj ect" << std::endl;

exi t (EXI T_FAI LURE) ;

}

servi ceProvi der - >soap- >header - >ns4__server|Info = NULL;

servi ceProvi der - >soap- >header - >ns4__user Credential s =

new _ns4__user Credential s;

if (NULL == serviceProvider->soap->header->ns4__user Credenti al s)
std::cerr << "Failed creating an _ns4__userCredentials objec
exi t (EXI T_FAI LURE) ;

}

servi ceProvi der - >soap- >header - >ns4__user Credent i al s- >accessToken

/'l creating 2 objects for the request and for the response
_ns7__AddServi ceProvider *request = new _ns7__AddServi ceProvi der
if (NULL == request) {
std::cerr << "Failed creating an AddServiceProvi der object"
exi t (EXI T_FAI LURE) ;
}
_ns7__AddServi ceProvi der Response *response =
new _ns7__AddServi ceProvi der Response;
if (NULL == response) {
std::cerr << "Failed creating an AddServi ceProvi der Response
exi t (EXI T_FAI LURE) ;
}

/*
* information about the new Service Provider
* (name, login, password, country and charging plan)
**/

std::stringstream nane_ss;

std::stringstream| ogin_ss;

std::stringstream pass_ss;

std::string nang;

std::string |ogin;

std::string pass;

std::string country(COUNTRY);

std::string chargingPl anl D;

srand(ti me(NULL));

/1 filling in the information about the new organization (naneg,
name_ss << "Servi ceProviderCPP_" << rand() % 1000;

login_ss << "Admin_" << rand() % 1000;

pass_ss << "Pass_" << rand() % 1000;

name_ss >> nane;
I ogi n_ss >> | ogin;
pass_ss >> pass;

request - >name = &nane;
request->login = & ogin;

{

t" << std::endl;

= accessToken;

<< std::endl;

obj ect

I ogin,

<< std::endl;

password,

country and

chargi ng plan)

request - >password = &pass;
request->country = &country;

/1 get a random chargi ng plan |ID using RandontChar gi ngPl an cl ass

RandonChar gi ngPl an *rcp = new RandontChar gi ngPl an(accessToken) ;

if (NULL == rcp) {
std::cerr << "Failed creating a RandonChargi ngPl an object" << std::endl;
exi t (EXI T_FAI LURE) ;

}

char gi ngPl anl D = rcp->get RandonChar gi ngPl an() ;

if (chargingPlanl D ! = NO CHARG NG_PLAN_FOUND)
request - >ns5__char gi ngPl anl D = &char gi ngPl anl D;

/1 making the request and getting the response
int errCode = serviceProvider->__ns25__AddServi ceProvi der (request, response);
if (SOAP_OK == errCode) {
/'l no error
std::cout << "OK addi ng service provider" << std::endl;
} else {
/1 error found
soap *s = new soap;
if (NULL == s) {
std::cerr << "Failed creating a soap object" << std::endl;
exit (EXI T_FAI LURE) ;
}
s->error = errCode;
soap_print_fault(s, stderr);
std::cerr << "Please check the log files for nmore information" << std::endl;
}

return O;

Adding Other Account Types
These examples can be found in the package downloaded with the SystemAPI C++ Tool.

If you wish to add other account types (organizations, extensions or users), there is not much to change from the program listed above. First of all, you will
need to create the proper object, so instead of writing:

Servi ceProvi der *serviceProvider = new ServiceProvider;

You will need to write:

for adding an organization:

Organi zation *organi zati on = new Organi zati on;

for adding an extension:

Ext ensi on *extensi on = new Extension;

for adding an user:

User *user = new User;

The parameters that you need to fill in for the request are the same as before (name, login, password, country), except you also need to specify a parent
ID. If you add an organization, the parent ID will represent the ID of the service provider that will own the organization; if you add a new user, the parent ID
will represent the ID of the organization; if you add an extension, the parent ID will represent the ID of the user. In short, you will simply need to add this:

std::string parentlD("1344");//instead of 1344, put a real id
request->parent| D = &parentl|D;

The last thing you need to modify is the request name, which will switch from AddSer vi cePr ovi der to AddOr gani zat i on, AddUser or AddExt ensi on
. For example:

int errCode = extension->__ns28__AddExt ensi on(request, response);

Keep in mind that you may need to change ns28 to the proper namespace that will be generated by gsoap. Also, each appearance of the ser vi cePr ovi
der!object will have to be properly changed to the name of the object created (extension, user or organization in our case).

Call Costs

Here's another example that shows how to make a CallReport request.

int main(int argc, char *argv[])
{
/1 make sure that each tinme you run your application, a valid access token is provided
if (argc '=2) {
std::cerr << "Usage: ./<executable_name> \"<access_token>\"" << std::endl;
std::cerr << " exanpl e: ./denocal I costs \"1| V_pnPvEn25- H qAzERx_nvJbBvNs~q3F| 1| D~nbBUf 87k~71 12F79T-
nJnHU12Y. 4Aq\"" << std::endl;
exit (EXI T_FAI LURE) ;
}

/1 W will make a Call report, so we need a Report object

Report *report = new Report;

if (NULL == report) {
std::cerr << "Failed creating a Report object" << std::endl;
exi t (EXI T_FAI LURE) ;

}

/1 Authentication Data - passed from conmand |ine

std::string accessToken(argv[1]);

/1 filling in the header with the user credentials

report->soap- >header = new SOAP_ENV__Header;

if (NULL == report->soap->header) {
std::cerr << "Failed creating a SOAP_ENV__Header object" << std::endl;
exit (EXI T_FAI LURE) ;

}

report - >soap- >header->ns4__serverInfo = NULL;

report->soap- >header->ns4__userCredentials = new _ns4__userCredenti al s;

if (NULL == report->soap->header->ns4__userCredentials) {
std::cerr << "Failed creating an _ns4__userCredentials object" << std::endl;
exi t (EXI T_FAI LURE) ;

}

report - >soap- >header - >ns4__user Credent i al s- >accessToken = accessToken;

/] creating 2 objects for the request and for the response
~ns21__Call Report *request = new _ns21_Cal |l Report;
if (NULL == request) {
std::cerr << "Failed creating a Call Report object" << std::endl;
exi t (EXI T_FAI LURE) ;
}
_ns21__Cal | Report Response *response = new _ns21__Cal | Report Response;
if (NULL == response) {
std::cerr << "Failed creating a Call Report Response object" << std::endl;
exi t (EXI T_FAI LURE) ;
}

/1 making the request and getting the response
int errCode = report->__ns32__Cal | Report(request, response);
if (SOAP_OK == errCode) {
/1 no error
std::cout << "OK retrieving call report\n";
std::ifstream |l ogfil e("RECV.l0g");
std::stringstream ssBuffer;
std::string fileContent;
ssBuffer << logfile.rdbuf();
fileContent = ssBuffer.str();
size_t posResult = fileContent.rfind(RESPONSE_BEG N) ;
std::cout << std::endl << std::endl << "Result is " << std::endl <<

fileContent.substr(posResult) << std::endl;
} else {
/1 error found
soap *s = new soap;
if (NULL == s) {
std::cerr << "Failed creating a soap object" << std::endl;
exi t (EXI T_FAI LURE) ;
}
s->error = errCode;
soap_print_fault(s, stderr);
std::cerr << "Please check the log files for nmore information" << std::endl;
}

return O;

	C++ Example

